Dealing with Uncertainty in Climate Change Adaptation and Mitigation

Dr. Marc Neumann, BC3
a, b, Statistical distribution of mean summer temperatures at a grid point in northern Switzerland.

c, Change in average

d, Change in variability (relative change in standard deviation)

Schär et al. 2004, Nature
Mean annual streamflow

Multi-model mean change across 5 General Circulation Models (GCMs) and 11 Global Hydrological Models (GHMs); saturation shows the agreement on the sign of change across all 55 GHM–GCM combinations (for a global mean temperature rise of 2°C above 1980–2010).

[source: WGII AR5 Fig 3.4]
Change in mean monthly runoff across **seven climate models**, with a 2°C increase in global mean temperature above 1961-1990. HadCM3 is highlighted separately, showing changes with both a 2°C increase (dotted line) and a 4°C increase (solid line). [source: WGII AR5 2014, Fig.3-5]
Change in mean monthly runoff across seven climate models, with a 2°C increase in global mean temperature above 1961-1990. HadCM3 is highlighted separately, showing changes with both a 2°C increase (dotted line) and a 4°C increase (solid line). [source: WGII AR5 2014, Fig.3-5]
1. Emission scenario
2. Global climate model
3. Downscaling to regional level
4. (Local weather patterns)
5. Impact models
6. Economic valuation of impacts
Types of Uncertainty

• Epistemic uncertainty
 – lack of knowledge, partially reducible by further investigation

• Aleatory uncertainty (natural variability)
 – spread of values from a well specified population, irreducible, frequency distribution

• Ambiguity/Vagueness
 – Capability of being understood in two or more ways; double or dubious signification
Risk vs. uncertainty

• Civil Engineering:
 \[\text{Risk} = \text{Probability}(\text{Flood}) \times \text{Cost}(\text{Flood}) \]

• Intergovernmental Panel on Climate Change (IPCC - AR5):
 \[\text{Risk} \leftarrow \text{Hazard} \times \text{Exposure} \times \text{Vulnerability} \]
Interpretation of uncertainty

<table>
<thead>
<tr>
<th>Term</th>
<th>Likelihood scale (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtually certain</td>
<td>Likelihood of the outcome</td>
</tr>
<tr>
<td>Very likely</td>
<td></td>
</tr>
<tr>
<td>Likely</td>
<td></td>
</tr>
<tr>
<td>About as likely as not</td>
<td></td>
</tr>
<tr>
<td>Unlikely</td>
<td></td>
</tr>
<tr>
<td>Very unlikely</td>
<td></td>
</tr>
<tr>
<td>Exceptionally unlikely</td>
<td></td>
</tr>
</tbody>
</table>

A: For each term provide **single estimate** on a scale from 0 to 100%

B: For each term provide a **range (from – to)** on a scale from 0 to 100%
IPCC – AR5 Treatment of Uncertainty

Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties

IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties Jasper Ridge, CA, USA, 6-7 July 2010

IPCC – AR5 Treatment of Uncertainty

“Each key finding is based on an author team’s evaluation of associated evidence and agreement. The confidence metric provides a qualitative synthesis of an author team’s judgement about the validity of a finding, as determined through evaluation of evidence and agreement. If uncertainties can be quantified probabilistically, an author team can characterize a finding using the calibrated likelihood language or a more precise presentation of probability.”
Figure 1: A depiction of evidence and agreement statements and their relationship to confidence. Confidence increases towards the top-right corner as suggested by the increasing strength of shading. Generally, evidence is most robust when there are multiple, consistent independent lines of high-quality evidence.
IPCC AR5 - calibrated likelihood language

<table>
<thead>
<tr>
<th>Term*</th>
<th>Likelihood of the Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtually certain</td>
<td>99-100% probability</td>
</tr>
<tr>
<td>Very likely</td>
<td>90-100% probability</td>
</tr>
<tr>
<td>Likely</td>
<td>66-100% probability</td>
</tr>
<tr>
<td>About as likely as not</td>
<td>33 to 66% probability</td>
</tr>
<tr>
<td>Unlikely</td>
<td>0-33% probability</td>
</tr>
<tr>
<td>Very unlikely</td>
<td>0-10% probability</td>
</tr>
<tr>
<td>Exceptionally unlikely</td>
<td>0-1% probability</td>
</tr>
</tbody>
</table>
Example heat waves (Table TS.2)

Observed:

Very likely decrease in the number of cold days and nights and increase in the number of warm days and nights, on the global scale between 1951 and 2010. [WGI AR5 2.6.1]

Medium confidence that the length and frequency of warm spells, including heat waves, has increased globally since 1950. [WGI AR5 2.6.1]

Projected:

Virtually certain that, in most places, there will be more hot and fewer cold temperature extremes as global mean temperatures increase, for events defined as extremes on both daily and seasonal time scales. [WGI AR5 12.4.3]
Uncertainty in modelling

• Parameter uncertainty
 – Bayesian
 • Random variables
 • Prior distributions (expressing degrees of belief)
 • Learning with data \rightarrow posterior distributions
 – Frequentist
 • Error estimates (co-variance) obtained from statistical regression (mapping of random measurement error to parameters)

• Model structure uncertainty
Parameter uncertainty
Uncertainty analysis

• Identifying sources of uncertainty
• Quantifying uncertainty
• Propagating uncertainty
• Assessing uncertainty of outcomes
• Assessing sensitivity
Identifying sources of uncertainty

Quantifying uncertainty

Fossil fuels RURRs

cumulative probability vs. EJ

- Conventional oil
- Unconventional oil
- Conventional gas
- Unconventional gas
- Coal
Uncertainty propagation

- Monte Carlo simulation

1. Draw a random sample for each parameter
2. Run simulation
3. Store output

Repeat \(n \) times

Analyse output:
- mean, standard deviation, quantiles
- histogram, empirical cumulative distribution function
Cumulative CO₂ emissions

Total cumulative CO₂ emissions (GtC)

- 50% probability range
- 90% probability range
- 100% probability range

IPCC-AR5 range of baseline scenarios

Carbon budget
CO₂ cumulative emissions 2100

IPCC-AR5 review
(50% confidence interval)

50% confidence interval
Temperature change

<2°C threshold
Temperature change in 2100

IPCC-AR5 review
(50% confidence interval)
Sensitivity analysis

Many sensitivity analyses are based on changing one parameter at a time (local sensitivity analysis), often assessing the impact of a small perturbation to that parameter.

Global sensitivity analysis relaxes these assumptions by looking at the effect of varying a parameter:

i) while all others are also varying and
ii) across the entire distribution.
Global Sensitivity Analysis
(Standardised Regression Coefficients)

\[y = \sum b_i \cdot x_i + a \]

\[\beta_i = b_i \cdot \frac{\sigma_{x_i}}{\sigma_y} \]

\[\beta_i^2 \text{ Variance contribution of } x_i \text{ to } y \]

\(R^2 > 0.7: \text{Saltelli et al. (2004)} \)
Global Sensitivity Analysis

Table 2 Fraction of variance in climate outcomes for the year 2100 explained by the main inputs (squared standardized regression coefficients, SRC2)

<table>
<thead>
<tr>
<th></th>
<th>Total cumulative CO$_2$ emissions</th>
<th>Total radiative forcing</th>
<th>Temperature change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional oil RURR</td>
<td>0.014</td>
<td>0.020</td>
<td>0.003</td>
</tr>
<tr>
<td>Unconventional oil RURR</td>
<td>0.003</td>
<td>0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>Natural gas RURR</td>
<td>0.022</td>
<td>0.043</td>
<td>0.012</td>
</tr>
<tr>
<td>Coal RURR</td>
<td>0.730</td>
<td>0.676</td>
<td>0.138</td>
</tr>
<tr>
<td>ECS</td>
<td>—</td>
<td>0.017</td>
<td>0.702</td>
</tr>
<tr>
<td>Other inputs</td>
<td>0.004</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>Total (R^2)</td>
<td>0.774</td>
<td>0.766</td>
<td>0.857</td>
</tr>
</tbody>
</table>

For total cumulative CO$_2$ emissions and total radiative forcing, the coal RURR explains 73% and 68% of the uncertainty respectively, whereas for the temperature change, coal RURR explains only 14%, with equilibrium climate sensitivity (ECS) explaining 70%. Total (R^2) represents the coefficient of determination of the total multivariate regression.
Caveat

Models are concepts, i.e. thought experiments!

Including uncertainty can either reduce or increase our overconfidence in our models

➔ Be explicit about assumptions and limitations
➔ Study of limitations as a continuous process
Climate Change

• System of systems
 – Complexity
 – Feedbacks
 – Non-linearity

• Emergence of new properties, structures, processes, knowledge, values, rules

→ Limits of predictability
Adaptation – look for

• **Satisficing** for a wide range of possible futures
• **Flexible and adaptive**
• **Low-regret**
• Address issues of the **present**
• With **co-benefits** to other sectors
• **Source control: Mitigation** [Precautionary principle]